TABLE OF CONTENTS

Before Installing ... 3
Steam Room Guidelines 3
Warning Signage ... 4
Locating the Steam Generator Unit 5
Selecting the Steam Generator, Specification Chart 6
Dimensional & Clearance Specifications 7-9
Installation: Plumbing, Water Supply, Steam Line, Drain, Safety Valve 10
Water Quality Information 10
Steam Room Guidelines 11
Steamhead & Acrylic Shield 11
Electric & Wiring ... 12
Wiring Diagrams .. 13-16
Digital 1 Control & Typical Installations 17
Digital 1 Control & Temperature Sensor Installation 18
Principles of Operation 19
Automatic Blowdown System 20-21
Digital 1 Control Operation 22
30-Minute Timer .. 22
Pre-Operation Check 23
Pressure Controls Operation & Testing; Torques Valves 23
Operation; Manual & Automatic Blowdown Instructions 24
Maintenance Instructions 25
Water Gauge & Gauge Glass: 26-27
 24-hour and 7-Day Time Switches:
 Mechanical & Digital Blowdown Timers 28-29
 30-Minute Room Timer 30-31
 Trouble Shooting 32-34
 Check: PC Boards, Probes, Steam Solenoid Valve, Digital 1 Control, Heating Element 35
 Element Replacement Instructions 36
 Typical Component Arrangement 37
 CU360 – CU1400; CU2000 – CU4500 37
 Auxiliary Manual Reset Low Water Cutoff 37
 Replacement Parts List 38-39
 Warranty ... 39
BEFORE INSTALLING

NOTICE Take time to read these instructions thoroughly before installing or servicing. Although this CU Steambath Generator has been qualified for shipment by MrSteam, the following must be reviewed for proper and safe use.

NOTICE CU Generators are designed for commercial applications that require continuous or near continuous use. CU Generators are not suitable for installations with intermittent operation were the generator remains unused for extended periods of time. Consult MrSteam before specifying a steam generator to determine the optimal steam generator for your application.

1. Verify that the model and accessories are as specified and ordered.
2. Verify that the power voltage and control voltage at the site is suitable for the CU Steambath Generator.
3. Verify the correct steam generator sizing by referring to the MrSteam sizing guide. See page 6.
4. DO NOT use black iron pipe between steam solenoid and steam head. Use brass pipe or copper tubing ONLY, and in accordance with National and local plumbing Codes.
5. The physical size of the unit, clearance for plumbing servicing and its distance from the steam room must all be considered before selecting a location for the generator. See page 5.
6. The Manufacturer's Data Report is supplied with the generator. This is an important document and may be required by a State or Provincial Agency. THIS DOCUMENT MUST BE SECURED IN A SAFE LOCATION.
7. Do not use or install unauthorized components, accessories or products on the generator or generator piping.

NOTICE The MrSteam Digital 1 System operating and over temperature control is to be installed in accordance with the specific instructions provided. See Note 7 below.

WARNING DO NOT alter or modify any MrSteam product. Doing so may result in an inoperable or hazardous installation and will void the warranty.

STEAM ROOM GUIDELINES

NOTICE The following general information should be used in conjunction with your architect, designer and contractor in determining all factors necessary in providing a suitable and safe steam room environment for your batters.

NOTICE Owners/operators should obtain a copy and familiarize themselves with the latest edition of the American College Sports Medicine Health/Fitness Faculty Standards and Guidelines, or a similar resource and reference publication, and refer to those guidelines for the proper and safe operation of a spa facility including steam rooms.

Steam room construction information is available from the Tile Council of America, Inc. at (864) 646-8453 or www.tileusa.com

1. Steam room must be completely enclosed, with full walls, door, floor and ceiling.

2. It is recommended that a gasketed door be used for heat sealing and steam containment. Windows, skylights and the like that are part of the steam room should be double paned. Only vapor sealed fixtures approved for the application should be used.

CAUTION 3. If tile or other smooth surface is used for the flooring, provide suitable anti-skid strips or equivalent, to prevent user slipping and injury.

NOTICE 4. Walls and ceilings must be constructed with water-resistant, non-corrosive surface, such as tile, marble, molded acrylic, or other non-porous material. The ceiling should be sloped to prevent dripping of condensate on bathers. If acrylic, fiberglass or other non-heat resistant materials are used as part of the steam room enclosure, see page 11, “Steamhead” for important additional details.

5. Provide floor drains inside and outside of the steam room for condensate run-off and steam room cleaning.

6. Comply with all applicable National and local building and electrical Codes and confer with design consultants and contractors for room construction details.

CAUTION 7. The Digital 1 Temperature Control System is required operating equipment for each steam room. The operating temperature control is to be set by the owner/operator to sense desired room temperature at the sensor location within the steam room. Connection of the Digital 1 Over Temperature cut-off is mandatory to provide additional protection to the batters. The steam room is to be operated in accordance with NOTICE information as noted above.

NOTICE Final selection of the steam room temperature setting is at the discretion of the owner/operator.
WARNING SIGNAGE

The CU Steambath generator is provided with a WARNING sign. This WARNING is to be secured to the outside of the steam room, on the steamroom door or adjacent to that door. Its location must be such that all steam bathers are readily made aware of the important information contained in the sign.

STEAM ROOM BENEFITS

Steambathing is a communal activity. Enjoy steam together with friends.
Relax, knowing that steam may be a natural detox. Here are some possible benefits of steambathing:
- Cleanses, nourishes, and hydrates skin.
- Boosts metabolism.
- Provides relief for respiratory ailments such as colds, flu, allergies, and asthma.
- Reduces stress and promotes restful sleep.

Follow your steambath with a refreshing shower.
If you would like your own personal steam bath at home contact us at www.mrsteam.com

WARNING

REDUCE THE RISK OF OVERHEATING AND SCALDING
1. Exit immediately if uncomfortable, dizzy or sleepy. Staying too long in a heated area is capable of causing overheating.
2. Children under the age of 16 should not use the steam bath.
3. Check with a doctor before use if pregnant, diabetic, in poor health or under medical care.
4. Breathing heated air in conjunction with consumption of alcohol, drugs or medication is capable of causing unconsciousness.
5. Do not contact steam head or steam at the steam head.

REDUCE THE RISK OF SLIPPING AND FALL INJURY

Use care when entering or exiting the steam room, floor may be slippery.

Note: For additional safety considerations see owner’s manual.

Mr. Steam: 43-20 34th Street, Long Island City, NY 11101, 1-800-76-STEAM, www.mrsteam.com
LOCATING THE STEAM GENERATOR UNIT

CAUTION (1-4):

1. MrSteam® CU commercial steambath generators are designed to NEMA Type 1 requirements and are intended for indoor use only. They are to be located indoors in a dry, clean location and are not to be subjected to moisture, condensate, hose wash down or the like.

2. Do NOT install steambath generator outdoors or wherever environmental conditions may effect the safety and/or performance of the generator.

3. Do NOT install steambath generator in locations such as unheated attics or basements, or where water could freeze.

4. Do NOT install steambath generator near flammable or corrosive materials, or chemicals such as gasoline, paint thinners, or the like. Installation in areas having high concentrations of chlorine (such as pool equipment room) must be avoided.

NOTICE

5. Select a location for steam generator in accordance with items 1-4 above and within 25 feet of the steam room. Reference “Dimensional & Clearance Specifications” information on pg. 7-9. See page 6 for guidance if generator is more than 25 feet from steam room, add 1 cu. ft. to the total volume size for every 1 ft. above the 25 ft. pipeline of the steam room when sizing the steam generator.

6. Install steambath generator on a solid and level surface, and mechanically secure generator in place.

7. Provide access to the steambath generator for servicing. See page 7-9 for Dimensional & Clearance Specifications

NOTICE

8. Steam line, safety valve and drain valve and plumbing, and steamheads become hot during operation and remain hot after shutdown for a period of time. Provide appropriate protection, including insulating plumbing lines. Avoid plumbing runs and steam head locations that can come in contact with service personnel and bathers. See figure 1.

WARNING

9. Each steamhead must be located away from the bather seating areas and traffic patterns as required to prevent incidental contact with the steamhead or direct steam emission.

NOTICE

A LOCKED UTILITY ROOM THAT ONLY PERMITS ACCESS TO THE STEAM GENERATOR AND ITS CONTROLS BY AUTHORIZED PERSONNEL AND IS NOT ACCESSIBLE TO THE GENERAL PUBLIC IS STRONGLY RECOMMENDED.

TYPICAL INSTALLATION

Figure 1:

FOR ILLUSTRATIVE PURPOSES ONLY.

Optional equipment shown. Consult with qualified designer, architect or contractor for steam room construction details, including location of steam head(s) and sensors.
SELECT A MrSteam CU SERIES GENERATOR

The resultant calculated volume of the steam room determines the Model CU steambath generator required. Steam room size and additional constructional factors affect model selected.

A. To determine the steam room volume first multiply Length x Width x Height of the steam room

Example: A steam room 8' x 9' x 8' = 576 cu. ft. (volume). Select the MrSteam Model which is the next larger volume. In this example, Model CU750 is the correct selection.

Example: 2 Steam rooms each 6' x 10' x 7' x 2 rooms = 840 cu. ft. (volume). In this example, Model CU1000 is the correct selection.

B. The selection guidelines are recommendations only. Always consult with contractor, designer or architect. For general information, contact East Coast: 1-800-767-8326 or West Coast: 1-800-727-8326.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>KW</th>
<th>Max Room Volume* (cu ft)</th>
<th>Water Inlet Size NPT</th>
<th>Generator Outlet Size, NPT</th>
<th>Dimensions (inches)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU360</td>
<td>9</td>
<td>400</td>
<td>1/4''</td>
<td>1''</td>
<td>20 30 38</td>
<td>230</td>
</tr>
<tr>
<td>CU500</td>
<td>12</td>
<td>500</td>
<td>1/4''</td>
<td>1''</td>
<td>20 30 38</td>
<td>230</td>
</tr>
<tr>
<td>CU750</td>
<td>18</td>
<td>750</td>
<td>1/4''</td>
<td>1''</td>
<td>20 30 38</td>
<td>230</td>
</tr>
<tr>
<td>CU1000</td>
<td>24</td>
<td>1000</td>
<td>1/4''</td>
<td>1''</td>
<td>20 30 38</td>
<td>230</td>
</tr>
<tr>
<td>CU1250</td>
<td>30</td>
<td>1250</td>
<td>1/4''</td>
<td>1''</td>
<td>20 30 38</td>
<td>230</td>
</tr>
<tr>
<td>CU1400</td>
<td>36</td>
<td>1400</td>
<td>1/4''</td>
<td>1''</td>
<td>20 30 38</td>
<td>230</td>
</tr>
<tr>
<td>CU2000</td>
<td>48</td>
<td>2000</td>
<td>1/2''</td>
<td>1''</td>
<td>24 33 44</td>
<td>330</td>
</tr>
<tr>
<td>CU2500</td>
<td>60</td>
<td>2500</td>
<td>1/2''</td>
<td>1''</td>
<td>24 33 44</td>
<td>380</td>
</tr>
<tr>
<td>CU3000</td>
<td>72</td>
<td>3000</td>
<td>1/2''</td>
<td>1''</td>
<td>24 33 44</td>
<td>390</td>
</tr>
<tr>
<td>CU4500</td>
<td>108</td>
<td>4500</td>
<td>1/2''</td>
<td>1-1/2''</td>
<td>28 34 59</td>
<td>625</td>
</tr>
</tbody>
</table>

*After taking into consideration all factors affecting resultant steam room volume including length, width & height of steam room and distance to generator, select proper Model CU generator. Consult with an architect, engineer, designer and/or contractor before making final selection.
DIMENSIONS

FOR FIGURE 2 - 4:
Typical Arrangement of Boiler.
For illustration purposes only.
Refer to all notes below.

1. All dimensions are approximate.
2. CU360 to CU1400 have electronic liquid level controls.
 MM150 Liquid Level Control on CU2000 and larger models only.
CLEARANCE SPECIFICATIONS

NOTICE FOR FIGURE 5 - 7:
1. MM150 Liquid Level Control on CU2000 and larger models only. CU360 to CU1400 have electronic liquid level controls.

NOTICE 2. Minimum Clearance from Combustible Surfaces:
- 1" above top of CU generator
- Front of CU generator suitable for alcove installation only.
- 1" from left side of CU generator.
- 16" from right side of CU generator.
- Type of flooring: "C", suitable for combustible flooring.
- 1" from rear of CU generator.

3. Minimum clearances required by code are shown.
4. For ease of servicing, MrSteam recommends a minimum of 36 inches of clearance all around the CU generator.
CLEARANCE SPECIFICATIONS
(cont.)

Figure 6: CU2000 & CU3000

Service Area Clearance

*Access to service areas to be supplied by customer. Access door must not be less than 24” wide x 78” high. Refer to NEC 110.26 for details.

**1” Minimum distance from combustible materials all around except as noted.

Figure 7: CU4500

Service Area Clearance for 208V & 240V

MM150
INSTALLATION

PLUMBING
All plumbing shall be performed by a qualified licensed plumber and in accordance with applicable National and local Codes.

Water Supply
1. Connect to hot or cold water line. A hot water line is preferable, however incoming hot water should not exceed 160°F

WARNING The low temperature setting on many hot water heaters provides 120°F water

2. Provide a service shut off valve and water-line strainer in the water supply line upstream to the steam bath generator.
3. Flush the inlet water line thoroughly before making connection to the steam-bath generator.
4. Incoming water supply should be at least 25 psig and is not to exceed 100 psig.
5. Install a back flow preventor as required by Code.
6. Provide anti-water hammer device as required in accordance with Code.
7. Provide unions as required to facilitate installation and disconnection of piping.
8. Recheck all factory and field plumbing connections for tightness.

Steam Line
1. The steam solenoid valve should be plumbed as close as practical to the steam room using only brass pipe or copper tubing but must remain accessible for service or replacement. The steam solenoid must be plumbed horizontally.
2. Pitch the steam line a minimum of 1/4” per linear foot of run, towards the steam outlet on the generator, avoid valleys and trapping of condensate.
3. Fully insulate steam lines with suitably rated high temperature insulation.
4. Provide unions as required to facilitate installation and disconnection of piping.

Drain
In accordance with Code requirements, provide a drain line connection from the steam bath generator drain valve(s). If an Auto Blowdown is used, the drain line must be connected to the automatic blowdown valve. Refer to National and local plumbing Codes for drain requirements including receptor, trap, vent requirements and drain lines.

Safety Valve
Where permitted by Code, provide a connection for safety valve discharge.

WARNING DO NOT connect a shut off valve or plug at the safety valve outlet. DO NOT reduce outlet size of safety valve discharge.

WATER QUALITY INFORMATION

For optimum results, the feedwater supply should be tested prior to initial startup. If the mineral content exceeds the following recommended limits, various external treatment processes may be used to correct the problem.

WARNING An analysis of the on-site boiler feedwater must be made by a recognized and reliable water treatment company to ascertain the existing condition and treatment required.

Recommended Feedwater Quality
Hardness, ppm 8 – 85 (~0.5 – 5 gpg)
P-Alkalinity, ppm 85 – 410 (~5 – 24 gpg)
T. Alkalinity, ppm 200 – 500 (~7 – 0 gpg)
pH (strength of alkalinity) 8.0 – 11.4

Specific resistivity maximum 50k Ω•cm (50,000 ohm-centimeter).

Recommended Limits Within a Boiler

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids, ppm</td>
<td>3500</td>
</tr>
<tr>
<td>Total Alkalinity, ppm</td>
<td>850</td>
</tr>
<tr>
<td>Suspended solids, ppm</td>
<td>300</td>
</tr>
<tr>
<td>Silica (SiO2), ppm</td>
<td>125</td>
</tr>
<tr>
<td>Sulfite (SO3), ppm</td>
<td>25 – 50</td>
</tr>
<tr>
<td>Phosphate, ppm</td>
<td>30 – 60</td>
</tr>
<tr>
<td>P-Alkalinity as CaCO3, ppm</td>
<td>900</td>
</tr>
<tr>
<td>Iron, ppm</td>
<td>2</td>
</tr>
</tbody>
</table>

Blowdown boiler at least a once a day. If boiler water or feed-water are outside the above limits, a more frequent blowdown is required.

Specific resistivity maximum 50k Ω•cm (50,000 ohm-centimeter).

Water quality can affect efficiency or result in boiler damage if neglected. Boiler feedwater contains impurities in solution and suspension. These impurities concentrate in the boiler. The concentration of these impurities increases as more feedwater is introduced into the boiler and steam is produced. If the suspended solids are allowed to concentrate beyond certain limits, a deposit or “scale” will form on the boiler internal surfaces. This deposit can interfere with the proper boiler operation and cause boiler failure.

The concentration of these impurities is generally controlled by the feedwater quality and by blowdown. Blowdown refers to removing a portion of the boiler water with high solids concentration and replacing it with makeup water of a lower concentration.
STEAM ROOM GUIDELINES

NOTICE The following general information should be used in conjunction with your architect, designer and contractor in determining all factors necessary in providing a suitable and safe steam room environment for your bathers.

NOTICE Owners/operators should obtain a copy and familiarize themselves with the latest edition of the American College of Sports Medicine Health/Fitness Faculty Standards and Guidelines (ISBN: 0736051538), or a similar resource and reference publication, and refer to those guidelines for the proper and safe operation of a spa facility including steam rooms.

STEAMHEAD (3/4" N.P.T.)

1. For steam rooms constructed of tile, marble or similar non-porous heat-resistant materials for the enclosure, locate steam head 12 inches above steam room floor and install MrSteam PN 103985 acrylic shield on each steamhead. To insulate non-heat resistant material fill gap between steam pipe and wall with silicone and use 103938 shield between the wall and steamhead.

2. Locate each steamhead away from bather seating area and away from traffic patterns as required to prevent incidental contact with steamhead or direct steam emissions.

3. Install each steamhead with steam slots facing to the left and right as shown in the diagrams.

NOTICE To preserve the steamhead finish, do not use wrench or other tools to tighten. Use of proper thread sealant and hand tightening is usually sufficient.

4. Apply a bead of silicone around the steamhead where it meets the wall as required to prevent moisture damage.

ACRYLIC SHIELD

Apply a small bead of silicone in the grooves on the top and bottom of the steamhead. Place an Acrylic Shield (PN 103985) over the steamhead until the tabs engage the grooves in the steamhead.

NOTICE Do not use with fragrance containing aldehydes. Acrylic Shield damage may result. MrSteam oils are approved for use with this acrylic shield.
ELECTRIC

WARNING Electric shock hazard. Disconnect all power supplies at the main disconnect switch before proceeding. All electrical wiring must be installed by a qualified licensed electrician in accordance with National and local Codes.

The steambath generator is factory wired and pre-tested before shipment. Electrical power supply details are provided on the data plate secured to the generator and as part of this manual. Refer to applicable wiring and schematic information.

1. Check power and control circuit voltage requirements on the data plate.

NOTICE Separate 120 VAC line is not required if optional 120 VAC control transformer has been purchased and provided as factory equipment.

2. Use minimum 90°C insulated copper conductors only for field wiring, sized in accordance with National and local electric Codes. Refer to Amperage Chart below.

3. Connect suitably sized copper equipment grounding conductor in accordance with National and local electric Codes to ground terminal provided.

4. Install a separate dedicated circuit breaker or other approved overcurrent protection device between the incoming electrical supply and the generator, in accordance with National and local electric Codes.

NOTICE 5. With main disconnect switch off and no electric power entering the generator, tighten all electrical connections including all factory connections at the terminal block, fuse block, top and bottom of contactor and element pins prior to energizing generator (torque values are listed on individual components, control circuit terminal strips should be torqued to 20 in-lbs.).

WIRING

CAUTION To avoid possible electric shock, the steambath generator shall be suitably grounded in accordance with National Electric and local Codes. Disconnect all power supplies at the main disconnect switch before proceeding.

1. Electric wiring to the steambath generator must be in accordance with National Electrical and local wiring Codes following wiring diagram supplied. Such wiring shall be done by a licensed electrician. See Amperage Chart and Notes below.

2. The unit is wired and pre-tested before shipment. Follow all instructions provided for safely and properly wiring steambath generator and accessories.

CAUTION Installer shall use a safety switch of adequate capacity employing suitably rated circuit breakers or fuses between main electrical power source(s) and the generator. Location of safety switch to be in accordance with National and local electric codes.

NOTICE 3. Insure all electrical connections are sufficiently tightened prior to energizing generator. See item 5 under “Electric”.

WARNING Substitution of components or modification of wiring systems voids warranty and can lead to dangerous operating conditions.

4. The Digital 1 Temperature Sensor and High Limit Temperature sensor(s) must be located inside the steam room. Locate approximately 5 feet above the steam room floor. DO NOT locate near the steam head.

5. The steam solenoid valve(s) shall be located outside the steam room and shall be wired to the Digital 1 controller(s) in accordance with wiring diagram provided. See applicable wiring diagrams included as part of this manual.

CAUTION Ensure all splices in the sensor cable are securely crimped soldered and sealed with heat shrink tubing.

AMPERAGE CHART

<table>
<thead>
<tr>
<th>Model No.</th>
<th>kW</th>
<th>208V 1 PH</th>
<th>208V 3 PH</th>
<th>240V 1 PH</th>
<th>240V 3 PH</th>
<th>480V 3 PH</th>
<th>600V 3 PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU360</td>
<td>9</td>
<td>44</td>
<td>25</td>
<td>38</td>
<td>22</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>CU500</td>
<td>12</td>
<td>58</td>
<td>34</td>
<td>50</td>
<td>29</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>CU750</td>
<td>18</td>
<td>87</td>
<td>50</td>
<td>75</td>
<td>44</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>CU1000</td>
<td>24</td>
<td>116</td>
<td>67</td>
<td>100</td>
<td>58</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>CU1250</td>
<td>30</td>
<td>145</td>
<td>84</td>
<td>125</td>
<td>73</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>CU1400</td>
<td>36</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>87</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>CU2000</td>
<td>48</td>
<td>-</td>
<td>134</td>
<td>-</td>
<td>116</td>
<td>58</td>
<td>47</td>
</tr>
<tr>
<td>CU2500</td>
<td>60</td>
<td>-</td>
<td>167</td>
<td>-</td>
<td>145</td>
<td>73</td>
<td>58</td>
</tr>
<tr>
<td>CU3000</td>
<td>72</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>174</td>
<td>87</td>
<td>70</td>
</tr>
<tr>
<td>CU4500</td>
<td>108</td>
<td>-</td>
<td>300</td>
<td>-</td>
<td>260</td>
<td>130</td>
<td>104</td>
</tr>
</tbody>
</table>

NOTICE

- Use minimum 90°C insulated copper conductors only for field wiring sized in accordance with National and local electric Codes.
- Consult factory for other voltage/phase combinations. CU generators are suitable for 50/60 Hz. Standard control circuit voltage for above V/PH combinations for United States, Canada and Mexico is 120 VAC. Exception: 220-240 VAC control circuit voltage is provided on non-domestic product where power voltage is 220-240 V/3 PH, 380V/3PH, 415V/3 PH, etc.
American College of Sports Medicine Health/Fitness Faculty Standards and Guidelines, or a similar resource and reference publication, and refer to those guidelines for the proper and safe operation of a spa facility including steam rooms. Steam room construction information is available from the Tile Council of America, Inc. at (864) 646-8453 or www.tileusa.com.

The Digital 1® Temperature Control System is required operating equipment for each steam room. The operating temperature control is to be set by the owner/operator to sense desired room temperature at the sensor location within the steam room. Connection of the Over Temperature portion of the Digital 1 control is mandatory to provide additional protection to the bathers. The steam room is to be operated in accordance with the information as noted above.

Owners/operators should obtain a copy and familiarize themselves with the latest edition of the American College of Sports Medicine Health/Fitness Faculty Standards and Guidelines, or a similar resource and reference publication, and refer to those guidelines for the proper and safe operation of a spa facility including steam rooms. Steam room construction information is available from the Tile Council of America, Inc. at (864) 646-8453 or www.tileusa.com.

Final selection of the steam room temperature setting is at the discretion of the owner/operator.

Ensure all splices in the sensor cable are securely crimped soldered and sealed with heat shrink tubing.
CONTROL CIRCUIT WIRING DIAGRAM
Digital 1® Temperature Control System and optional automatic blowdown assembly
For Models: CU360A to CU750A and CU1000AF3, CU1250AF3, CU1400AF3

NOTICE
1. Larger rooms may require two or more steam solenoid valves in parallel.
2. When generator services two rooms, second room requires a Digital 1 and Solenoid Valve(s).
CONTROL CIRCUIT WIRING DIAGRAM

Digital 1 Temperature Control System and optional automatic blowdown assembly
For Models: CU1000AB3, CU1000AC3, CU1250AB3, CU1250AC3, CU1400AB3, CU1400AC3

NOTICE

1. Larger rooms may require two or more steam solenoid valves in parallel.
2. When generator services two rooms, second room requires a Digital 1 and Solenoid Valve(s).
CONTROL CIRCUIT WIRING DIAGRAM
Models CU2000 and higher with Digital 1° Temperature Control System and Optional Automatic Blowdown Assembly

1. Digital 1 and CU-HTC sensors are intended to be field installed within the steam room at the location selected by the designer/architect. DO NOT LOCATE THE DIGITAL 1 and CU-HTC SENSORS NEAR OR ABOVE THE STEAMHEAD(S) AS THIS MAY CAUSE DIRECT STEAM EMISSION TO INTERFERE WITH STEAMROOM TEMPERATURE REGULATION.

2. AutoFlush System 24 hr. timer and Digital 1 operating settings are at the discretion of the owner/operator.

NOTICE Owners/operators should obtain a copy and familiarize themselves with the latest edition of the instruction manual.
DIGITAL 1® KIT
MrSteam CU Steambath Generator can be used for one or two steam rooms in accordance with guidelines for generator selection on page 5. Each room requires one Digital 1 Kit sized for the room. See page 5 (figure 1) for typical installation.

DIGITAL 1 KIT CONTENTS:
- Digital 1 Control (factory installed on generator)
- Digital 1 Sensor
- One 3/4" Steam Solenoid Valve and 3/4" Steamhead
- Acrylic Shield
- Sensor Cover

CU2 - DIGITAL 1 KIT CONTENTS
CU2000–4500 serving one room using two steam solenoid valves and two steamheads.

CU2-D1 KIT CONSISTS OF:
- Digital 1 Control (factory installed on generator)
- Digital 1 Sensor
- Two 3/4" Steam Solenoid Valves and 3/4" Steamhead
- Two Acrylic Shields, one for each steamhead
- Sensor Cover

TYPICAL DIGITAL 1 SOLENOID AND STEAM HEAD INSTALLATIONS

Double steam rooms, single steam head (2x CU1-D1 up to CU1400)

NOTICE FOR ILLUSTRATIVE PURPOSES ONLY.
Optional equipment shown. Consult with qualified designer, architect or contractor for steam room construction details, including location of steam head(s) and sensors.
DIGITAL 1® CONTROL INSTALLATION

NOTICE If the steam generator came with a factory installed Digital 1 control, skip to Sensor Installation.

WARNING Hazard of Electric Shock. Disconnect all power supplies before making wiring connections.

NOTICE Reference applicable wiring diagram.

1. Remove 4" diameter blank cover located on steam generator. Mount the Digital 1 faceplate on the back of the generator cabinet with provided screws and nuts. For one room installation use the upper blank.

2. Connect the control wires to the bottom of the terminal block above the control. The terminals are coded with the wire insulation color: Black-White-Black-Brown-Open-White.

3. Refer to applicable schematic for proper wire connections.

DIGITAL 1® OPERATING: TEMPERATURE SENSOR INSTALLATION

- Locate sensor on a wall inside the steam room five (5) feet above the floor.

DO NOT LOCATE THE DIGITAL 1 SENSORS NEAR OR ABOVE THE STEAMHEAD(S) AS THIS MAY CAUSE DIRECT STEAM EMISSION TO INTERFERE WITH STEAM-ROOM TEMPERATURE REGULATION.

- Route sensor cable directly to Digital 1 Control.

- Do not route sensor cable with power wiring next to electric motors or any other location subject to electrical noise.

- Seal cable entrance to steam room with silicone.

- Protect sensor with bulb guard provided.

CAUTION Ensure all splices in the sensor cable are securely crimped or soldered and sealed with heat shrink tubing.
PRINCIPLES OF OPERATION

MrSteam CU Steambath Generators require two sources of electrical supply – power voltage and control voltage. Power voltage is usually 208, 240, or 480 volt, single or three phase. Control voltage for generator suitable for operation with these voltages is 120V, 1PH.

The Automatic Blowdown System (CU81600) has a 24-hour, 7-day timer that turns the steambath generator ON and OFF. At the beginning of the "ON" cycle, the boiler is automatically blown down, discharging daily accumulation of minerals and salts which if not drained may affect steam generator performance.

An Auxiliary Manual Reset Low Water Cutoff serves as a back up to the standard liquid level control as required in some jurisdictions and operation.

NOTICE In all cases, refer specifically to the boiler data plate located on the outside of the boiler enclosure for rated power and control voltages.

NOTICE See the generator nameplate for specific electrical supply requirements for your steam generator. A lighted ON/OFF switch activates the control circuit. MrSteam CU Generators are equipped with automatic liquid level/low water cut-off control. CU360 – CU1400 are equipped with a dual probe type electronic control. CU2000-CU4500 are equipped with float type MM150 control. (Refer to wiring diagrams.) When there is no water in the generator, the contactor is "OFF" and the water feed solenoid valve is "ON". The unit will start filling with water. When the water level has reached approximately halfway up the gauge glass, the contactor(s) will be energized and, in turn, energize the heating element(s). The water solenoid will continue to feed water for a short time and then de-energize. Steam will be available within a few minutes.

The generator has an electronic high water level cut-off control. If water level rises near the top of the pressure vessel, the contactor(s) and the water feed solenoid valve will de-energize to "OFF". When steam pressure reaches the operating pressure control setting, the pressure control will de-energize the contactor(s). Operating pressure control is factory set at 5 psig.

NOTICE It is recommended that the steam generator not be operated higher than 5 PSIG.

Steam supply to the steambath is controlled by the Digital 1 Temperature Control System and the steam solenoid valve(s). As the room temperature selected by the owner/operator decreases below the set point, the Digital 1 Control will energize the steam solenoid valve(s) and allow steam to enter the steam room. Once the set temperature on the control is reached at the sensor, the control will de-energize the steam valve, closing the valve and stopping the flow of steam into the steam room.

The Digital 1 Kit is provided with Over Temperature Control. Digital 1 monitors the room temperature inside the commercial steambath. If the room temperature exceeds the set point, the Digital 1 shuts off the power to the CU Steambath Generator, shutting steam off. CU-HL can also send a signal to an audible alarm (CU Alarm sold separately).

The pressure in the generator will decrease slightly as steam leaves the generator and enters the steam room. The pressure control will energize and de-energize the contactor(s), maintaining the set pressure. As the water level in the generator decreases, the liquid level control will energize the water solenoid valve on and off and maintain proper water level.

NOTICE Owners/operators should obtain a copy and familiarize themselves with the latest edition of the American College of Sports Medicine Health/Fitness Faculty Standards and Guidelines, or a similar resource and reference publication, and refer to those guidelines for the proper and safe operation of a spa facility including steam rooms.

The owner/operator has the responsibility to select a room operating temperature meeting guideline requirements for steam rooms.

Important Optional Equipment:

An optional control circuit transformer provides control circuit voltage from the power supply voltage. This option is in lieu of the need for a separate control circuit.
AUTOMATIC BLOWDOWN SYSTEM CU81600

The Automatic Blowdown System factory installed items:
• Blowdown Control Panel
• Motorized Drain Valve Assembly
PN CU81600

AUTOMATIC BLOWDOWN SYSTEM KIT INSTALLATION

NOTICE If the steam generator came with a factory installed Automatic Blowdown System see page 28 on how to program the timer.

WARNING Hazard of Electric Shock. Disconnect all power supplies before making wiring connections.

NOTICE Reference applicable wiring diagram.

1. Remove blank cover and mount the Automatic Blowdown Control Panel on the front of the generator cabinet with screws and nuts provided.
2. Remove the jumper between Brown & Black from the terminal block above the panel.
3. Connect the wires to the terminal block. The terminals are coded with the wire insulation color: Brown-Black-White-Green.
4. When using the Digital Blowdown timer (PN 103662) install the Snubber (PN 104251) between the black and white terminals.
5. Plumb the motorized valve assembly to the generator drain valve.
6. Install the valve cable in the knockout below the Automatic Blowdown Control Panel.
7. Connect the wires to the terminal block at the bottom of the panel. The terminals are coded with the wire insulation color. CU81600: White-Blue-Red-Green
8. Program the timer and set the clock (see pg. 28)
AUTOMATIC BLOWDOWN OPERATION & TESTING

NOTICE The Time Clock controls boiler operation. The boiler is OFF when the timer is on. The Blowdown Valve will open when the timer turns on and the boiler shuts off. See page 28 for Time Clock instructions.

CAUTION To provide for safe and low temperature blowdown, and to comply with National and local plumbing and building Codes, it may be necessary to blowdown into an ASME Code blow-down separator tank, or to take other precautions to prevent damage to building drain plumbing. Consult with a licensed plumber.

WARNING Burn Hazard. Pressurized Steam and Hot Water is discharged during blowdown.

Duration Adjustment
Using a small flathead screwdriver, rotate the adjustment screw to the desired setting as shown in the diagram on the right.

NOTICE Do not set less than 10 seconds. Do not force screw past min and max stops, screw does not rotate more than 300 degrees

Factory Recommended Settings:
The factory recommended setting for all CU boilers is 60 seconds (100% turn).
1. Turn the override switch to permanent OFF (0).
2. Turn the generator On/Off Switch to “ON”. On/Off Switch pilot light and generator should be “ON”. Motorized drain valve should be closed. Auto blowdown light should be “OFF”.
3. Turn the override switch to permanent ON (1). On/Off Switch pilot light and generator should be “OFF”. Auto blowdown light should be “ON” Motorized drain valve remains open and remains open for approximately 60 seconds.
4. After 60 seconds: Motorized drain valve closes. Auto blowdown light should be “OFF”. On/Off Switch pilot light and generator remains “OFF”.
5. Turn the override switch to automatic ().

NOTE ASME blowdown separator tank systems are available from MrSteam. For more information please contact MrSteam at 1-800-76 STEAM.

DIGITAL1® CONTROL OPERATING PARAMETERS

- Operating Temperature range 100 – 120 °F (37.5 – 49 °C)
- Backup Temperature shut off fixed at 130 °F (54.5 °C).

SETTING OPERATING TEMPERATURE

1. Press the SET button twice, the light under OUT 2 will be on and the display will be flashing.
2. Use the UP / DOWN arrows to set the temperature. Factory set at 100°F (37.5 °C).
3. Press the SET button again; the display will be solid and showing room temperature (not pressing any button for 1 minute will also return the control to the room temperature).

NOTICE The control display remains on if the steam bath generator switch is in the OFF position, however power to the solenoids will be OFF.
OPERATION INDICATORS

OUT 1: The LED under OUT 1 is on during normal operating conditions. If the light under OUT 1 is off the Digital 1 is in backup temperature mode, an alarm will sound, the display will flash and the steam bath generator will be off.

OUT 2: The LED under OUT 2 goes ON and OFF during normal operating conditions. If the light under OUT 2 is OFF, the room temperature is satisfied and the steam solenoid valve will be closed. When the light under OUT 2 is ON the room temperature has not been satisfied and the steam solenoid should be open (if a 30 minute timer is used, that must be ON to open the steam solenoid).

BACKUP TEMPERATURE SHUT-OFF
- Digital1 Control will shut off power to the steam bath generator.
- The display will change to a flashing AH1, and an alarm will sound (if equipped the CU ALARM will also sound).
- To silence the Digital 1 Control Alarm press SET and DOWN simultaneously.
- The Digital 1 control will reset when the temperature in the room reaches normal operating range.

MESSAGE DISPLAY

Under normal operation, the actual room temperature will be displayed, the following messages may also appear (the Digital 1 Control alarm will also sound, press SET and DOWN simultaneously to silence alarm, if equipped with a CU ALARM turn the steam bath generator switch OFF to silence it, the steam bath generator will shut off until the error is cleared):

- **Err** Memory reading error, cut power to control to clear
- **AH1** Backup temperature alarm
- **AL1 (AL2)** Low temperature alarm, this may be an indication of a probe problem, check the actual room temperature
- **ooo** Open Probe, check probe connection, check probe with multimeter
- **---** Shorted probe, check any splices used, check probe with multimeter

NOTICE If equipped with CU SteamStop, the Digital 1 Control will display. When the CU SteamStop is pressed, reset the CU SteamStop to clear.

NOTICE The operating room temperature setting is determined by the owner/operator of the facility. For guidance, refer to ASCM guidelines or equal reference.

30 MINUTE ROOM TIMER

The 30 minute timer provides guests in the steam room an accurate and easy way to safely time their steam sessions. It is available as a Digital (CU-99216DIG) or Mechanical (CU-99216B) timer.

1. This timer may only be fitted by a qualified electrician.

WARNING Shock hazard! This timer uses the specific supply voltage. Fit the timer appropriately before connecting it to the main supply. Never touch the live contacts or components at the open back of the timer.

2. Protection against touch contact must be ensured by a proper mounting. When fitting the timer, make sure that during normal operation it is impossible for the end user of the steam generator it was fitted in to remove the timer by pulling it to the front and exposing the live parts.

3. Avoid any contact of the timer with water.

WARNING The 30 Minute Timers shall not be installed inside the steamroom.

NOTICE 4. A steam vent (PN 104072) must be installed in the steam line between the steam generator and the steam solenoid valve when using a 30 minute timer as shown.

NOTICE See the Digital Timer Operating Manual (PUR 100383) for complete installation instructions.

NOTICE All drawings are for illustrative purposes only.
PRE-OPERATION CHECK

Low water Cutoff (LWCO) and Feed Control Operation and Testing

1. All valves for incoming water supply are to be fully opened. Main disconnect switch to be in "ON" position. Generator switch to be in "ON" position. Since generator will be empty, water solenoid will be energized allowing the generator to fill with water until proper level is reached. Then the contactors will energize and supply voltage to heating elements.

2. Water level control operation: At this point the water should be visible approximately half way up the sight glass. Slowly open the drain valve located at bottom of the generator. The water level will fall allowing the low water cutoff/water level control to energize the feed water system. Close the drain valve for proper operation.

3. Low water cut-out switch performance. Close water feed valve. Open the drain valve completely. Maintain this condition until the water level falls within the gauge glass enough to cause the low water cutout switch to de-energize the heating elements. All contactors will be in the de-energized state at this time. Close the drain valve. For automatic re-setting type low water cutoff switches, feed system will return the water level to normal. For manual re-set the reset button must be depressed to complete circuit. The generator is now qualified for proper low water cutout and normal liquid-level operating conditions.

NOTICE For automatic blowdown, turn timer off and on until water level is low enough to de-energize heaters. Steambath generators are provided with one hi-limit pressure control and at least one operating pressure control.

PRESSURE CONTROLS OPERATION AND TESTING

1. All pressure controls are equipped with a screw allowing for setting of the desired operational and hi-limit pressures.

2. Factory setting of Hi-Limit Pressure Control is 10 PSI and Operating Pressure Control is 5 PSI, as shown in Figure 1.

3. For optimal performance, pressure controls should be kept at the factory setting.

4. If adjustments are needed, turn adjustment screw on top of pressure controls closewise to increase pressure, counter-clockwise to decrease pressure, as shown in Figure 2.

NOTICE Models CU360 - CU3000 are provided with one (1) automatic reset operating pressure control and one (1) manual reset high limit pressure control. Models CU4500 is provided with two (2) automatic reset operating pressure controls and one (1) manual reset high limit pressure control.

3. Pressure control operation check: Manually close the steam outlet valve. Switch the generator on to allow for steam pressure build-up. Pressure gauge reading will build and the operating pressure control will shut off the generator at the pressure setting. Re-setting the operating pressure control is accomplished by manually bleeding off pressure through the steam outlet valve and allowing the pressure to drop below the desired set point.

TORQUE VALVES

Check to insure all element flange bolts, element terminals, and contactor terminals are tightened to the following specifications.

<table>
<thead>
<tr>
<th>TORQUE VALUES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Element Flange Bolts</td>
<td>22 lb-ft</td>
</tr>
<tr>
<td>Element Terminals</td>
<td>20 lb-in</td>
</tr>
<tr>
<td>Contactor Terminals: Finalize</td>
<td>20 lb-in</td>
</tr>
</tbody>
</table>

NOTICE See page 36 for additional information and illustrations.
OPERATION

⚠️ CAUTION ⚠️ With all power disconnected at main switch, insure all electrical and mechanical connections are tight before energizing unit to prevent electrical problems and mechanical leaks.

1. Turn on water and electrical supply, power and control voltage suppliers. Turn unit switch to ON position; Switch light will go ON and water level will reach operating level automatically.
2. When proper operating level is reached (approximately half way up the gauge glass), the heating element(s) will be energized. In approximately 20 minutes, steam will begin to be produced.
3. Adjust the Digital 1 operating temperature control to the desired steam room setting at the sensor (range 100°F – 120°F). Operating temperature is at the discretion of the owner/operator.

⚠️ CAUTION ⚠️ For user comfort, the Digital 1° operating control is provided with an adjustable temperature range. The Digital 1 control will cycle automatically to maintain the room operating temperature selected by the owner/operator at the sensor at the set point temperature.

4. If not supplied with an automatic blowdown system, the generator must be blown manually down daily in accordance with manual blowdown instructions below. See below.

An optional automatic blow-down assembly is recommended for daily maintenance.

MANUAL BLOWDOWN INSTRUCTIONS

Blowdown is an essential part of operation. It is an excellent preventative maintenance procedure and will prolong steambath generator operation. Insure the following recommended blowdown schedule is established and followed daily:

1. If blowdown is conducted manually, at the end of each working day while unit is still operating, turn ON/OFF switch to the "OFF" position and close water supply valve. De-energize wall-mounted safety switch. Open blowdown valve(s) SLOWLY.
2. Discharge is complete when gauge glass shows no water. Unit has been effectively drained. Follow this procedure:
 a. Fully close the blowdown valve
 b. Fully open water supply
 c. Put ON/OFF switch in the "ON" position
 d. Close wall-mounted safety switch
3. Pressure may still be in the generator.
4. When re-filling is complete (water feed solenoid valve de-energizes and water is visible to half-way level in gauge glass), turn off generator unless further operation is required.
5. If you have been supplied with a manual reset low water control, as required by some states, the reset button on the control must be reset before unit will begin developing pressure. Do not push reset until unit has filled with water.
6. More frequent blowdowns may be required in area with hard water or excessive usage. Please consult with factory.

⚠️ CAUTION ⚠️ To provide for safe and low temperature blowdown, and to comply with National and local plumbing and building Codes, it may be necessary to blowdown into an ASME Code blow-down separator tank, or to take other precautions to prevent damage to building drain plumbing. Consult with a licensed plumber.

NOTICE ASME blowdown separator tank systems are available from MrSteam. For more information please contact MrSteam at 1-800-76 STEAM.

AUTOMATIC BLOWDOWN INSTRUCTIONS

Automatic Blowdown Systems drain the steambath generator every 24 hours (or more often if required or desired). It also turns the generator "ON" and "OFF". Blowdown occurs after the timer is "ON" and the generator is "OFF". The blowdown pilot light is energized during blow-down. To set the timer, refer to instructions on page 28.

⚠️ CAUTION ⚠️ Use of chemical cleaning compounds voids warranty.

⚠️ CAUTION ⚠️ To provide for safe and low temperature blowdown, and to comply with National and local plumbing and building Codes, it may be necessary to blowdown into an ASME Code blow-down separator tank, or to take other precautions to prevent damage to building drain plumbing. Consult with a licensed plumber.

NOTICE ASME blowdown separator tank systems are available from MrSteam. For more information please contact MrSteam at 1-800-76 STEAM.
MAINTENANCE INSTRUCTIONS

To establish a good preventive maintenance program, we suggest that the site equipment foreman, engineer or owner/operator familiarize themselves with these guidelines:

1. **Daily blowdown** at max 5 PSIG operating pressure is recommended for best steambath generator performance. In order to safeguard the heating element(s) within the steambath generator, the main switch and the steambath generator switch shall both be placed in the OFF position prior to blowing down the generator. Blowdown instruction should then be followed as outlined in this manual. Do not use chemical cleaning compounds in the steambath generator since the chemical agents may damage some of the generator components. A daily blowdown will assist in prolonging product operation.

2. **Only after electric power supplies have been disconnected at main disconnect switch, a monthly inspection** should be made of all wiring. All electrical connections should be checked for tightness. A check for steam and/or water leaks should be made and any loose fittings must be tightened immediately. Check heating element flange bolts for tightness between preventative maintenance service Specific torque in 22 Ft. lbs. cold.

3. Generators equipped with the McDonnell-Miller control (Models CU2000 and larger), should be checked for proper operation every three months or sooner. At the same time, a bottom heating element should be removed and inspected. If scale has begun to form, all elements should be cleaned and re-installed, using only new gaskets and bolts. The pressure control should also be removed to insure that the bellows has not become clogged. (See trouble-shooting guide for instructions.) Check valves should be inspected for leakage and proper operation.

4. Generators equipped with level probes (Models CU360 - 1400) for maintaining operating water level and probe for auxiliary low water cut-off protection need special consideration. The probe should be checked for chemical deposits and cleaned as necessary. This should be done every three months or sooner, as required by usage and/or water quality.

The probes and probe isolators should be cleaned using the following procedure:

- a. Use emery paper to clean probes.
- b. Remove the probe isolators.
- c. Use a bottle brush to remove scale from the inside of the probe isolators. Care must be taken to ensure the two holes on the side of the probe isolators are clear.
- d. Flush probe isolator thoroughly with water.
- e. Use Teflon tape on probe isolator threads and reinstall. Use Teflon tape on probe threads and reinstall.
- f. After installation, make sure the probe is not touching ground. With the generator drained and probe wires disconnected, there should be no continuity between the probe and ground.

CAUTION Under any circumstances, only qualified service personnel should attempt the above procedures. Always insure all electrical power supplies are disconnected at the main disconnect switches to prevent electric shock. Always insure that pressure within steam generator is 0 PSIG (zero pressure) whenever plumbing connections, including any factory-plumbed components, are being disconnected.

5. **Torque Values** Every two months or more frequently if required, insure all element flange bolts, element terminals, and contactor terminals are tightened to the following specifications.

<table>
<thead>
<tr>
<th>TORQUE VALUES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Element Flange Bolts</td>
<td>22 lb-ft</td>
</tr>
<tr>
<td>Element Terminals</td>
<td>20 lb-in</td>
</tr>
<tr>
<td>Contactor Terminals</td>
<td>Tighten to torque specified on contactor.</td>
</tr>
</tbody>
</table>

NOTICE See page 36 for additional information and illustrations.
WATER GAUGE & GAUGE GLASS

INSTALLATION

NOTICE Only properly trained personnel should install and maintain water gauge glass and connections. Pressure in generator must be at zero before proceeding. Remember to wear safety gloves and glasses during installation. Before installing, make sure all parts are free of chips and debris.

1. Apply Teflon tape or pipe dope to pipe threads. Install top gauge fitting (fitting without a drain valve) into the upper most tapping. Wrench tighten the fitting until it is snug and the glass outlet is pointing at five o’clock (about 1/8 turn from its final downward vertical position).

2. Install the bottom gauge fitting (the fitting with a drain valve) until it is snug and the glass outlet is pointing directly upward. Verify top and bottom fittings are threaded into the tapping the same number of turns (distance A = distance B).

3. Remove glass packing nut, friction washer (depending upon the model), and O-ring from the fittings, and place them, in the same order, on to both ends of the gauge glass. Push both packings about an inch up the gauge glass.

4. Gently insert one end of the glass into the top gauge fitting. Keeping the glass inside the top fitting, gently rotate the top gauge fitting clockwise until vertically aligned with the bottom gauge, then insert glass into bottom fitting until glass bottoms out on the shoulder inside the bottom fitting.

5. Carefully raise glass about 1/16" and slide lower O-ring down until the O-ring contacts the lower gauge fitting. **DO NOT** allow the glass to remain in contact with any metal!

6. Carefully slide upper glass packing up as far as possible.

7. Hand tighten both glass packing nuts, then tighten 1/2 turn more by wrench. Tighten only enough to prevent leakage. **DO NOT OVER TIGHTEN!** If any leakage should occur, tighten slightly, a quarter turn at a time, checking for leakage after each turn.

NOTICE Read all warnings and instructions before performing installation or maintenance.

WARNING Safety glasses and gloves should be worn at all times when working with or examining water gauge glass and connections.

Pressure in generator to be at zero before proceeding. Improper installation or maintenance of gauge glass and connections can cause immediate or delayed breakage resulting in bodily injury and/or property damage.
WATER GAUGE & GAUGE GLASS

USE AND CARE

DO NOTs
DO NOT use glass if it contains any scratches, chips, or any other visible signs of damage.
DO NOT reuse any tubular glass or glass packings.
DO NOT subject gauge glass to bending or torsional stresses.
DO NOT overtighten glass packing nuts.
DO NOT allow glass to touch any metal parts.
DO NOT exceed the recommended pressure of the gauge or gauge glass.
DO NOT clean the gauge or gauge glass while pressurized or in operation.

DOs
DO verify proper gauge has been supplied.
DO examine gauge glass and packings carefully for damage before installation.
DO install protective guards and utilize automatic ball checks where necessary to help prevent injury in case of glass breakage.
DO inspect the gauge glass daily, keep maintenance records, and conduct routine replacements.
DO protect glass from sudden changes in temperatures such as drafts, water spray, etc.

MAINTENANCE
Examine the gauge regularly for any signs of clouding, scratching, erosion, or corrosion. The glass should be inspected daily until the need for replacement becomes apparent. This will help establish the routine inspection and routine replacement schedules.

CLEANING
Use commercial non-abrasive glass cleaners to keep glass clean. Use diluted acids such as Hydrochloric (muriatic) acid when regular cleaners do not seem to work. Do not use wire brushes or any other abrasive materials which could scratch the glass.

INSPECTION
Examine the surface of the glass for scratches, corrosion, chips, cracks, surface flaws, or nicks. To do this, shine a very bright concentrated light at an angle of about 45 degrees. A defective glass will glisten as the light strikes imperfections. Glass which appears cloudy or roughened, and will not respond to cleaning, should be replaced.

STORING
Keeping gauge glass in original packaging until ready to install.
24-HOUR AND 7-DAY TIME SWITCHES
MECHANICAL BLOWNDOWN TIMER (PN 103805)

NOTICE The Time Clock controls boiler operation. The boiler is ON when the timer is ON. The Blowdown Valve will open when the Timer turns OFF.

PROGRAMMING
For CU steam bath generators equipped with Automatic Blowdown Systems CU81500 and CU81600, refer to the following instructions for time clock operation and settings. Timer settings for blowdown operation are at the discretion of the owner/operator.

The weekly program dial shows the seven days of the week and AM/PM imprints for each day.

The time switch is set by pushing the captive trippers to the outer ring position for the entire period that the boiler is to be turned ON, i.e., 2 hours to each tripper on the 7-day dial. When the tripper is pushed to the inside, the boiler is in the OFF position, and initiating the blowdown cycle. Due to the timer having one tripper for every 2 hours, the boiler will need to be OFF a minimum 2 hours. If less down time is needed the digital timer (PN 103662) can be set to the minute.

SETTING TIME
To set the current time and day of week, turn the minute hand clockwise. Do not set the time by rotating “Outer” Dial.

Turn the minute hand clockwise until the day of the week and the time of day on the outer dial is aligned with the triangle marker on the inner dial (two o’clock).

Example for 7-day program dial Monday 10:30 AM. Turn the minute hand clockwise until Monday 10:30 AM is aligned with the triangle on the inner dial. The hour and minute hand will show exactly 10:30.

FOR MANUAL OVERRIDE
Manual override can be accomplished at the discretion of the owner/operator as follows.

3-WAY MANUAL OVERRIDE SWITCH

<table>
<thead>
<tr>
<th></th>
<th>Boiler Permanent ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊙</td>
<td>Automatic</td>
</tr>
<tr>
<td>○</td>
<td>Boiler Permanent OFF</td>
</tr>
</tbody>
</table>

NOTICE It is recommended that for periodic and effective blowdown, the override switch be set in the ⊙ automatic setting.
24-HOUR AND 7-DAY TIME SWITCHES
DIGITAL BLOWNDOWN TIMER (PN 103662/103662-1)

NOTICE The Time Clock controls boiler operation. The boiler is ON when the timer is ON. The Blowdown Valve will open when the Timer turns OFF.

To Set Time & Day of Clock
1. Hold down the image of clock button for steps 2-4
2. Press the “**Day**” button to cycle through the days which are listed on the top line
3. Press the “**h+**” button to increase the current hour. **Note:** this will also change the AM/PM as it is listed to the right of the minutes.
4. Press the “**m+**” button to increase the current minute.

To Set Timer On/Off Times
(there are 7 different programs that can be set)
5. Click the “**Timer**” button to go into the timer mode.
6. **Program 1 ON** will be the first to come up.
 - This will be when the boiler turns on.
 - Set the day and time the same way you set the timer in steps 2-4.
7. Hit the “**Timer**” button to save the entry and move onto the next setting.
8. The next setting will be **Program 1 OFF**.
 - This will be when the boiler turns off. Once the boiler is turned off the automatic blowdown system will activate.
 - Follow steps 2-4 to set the date and time. Hit the “**Timer**” button to save the settings.
9. Repeat steps 6-8 to set programs 2-7.

On/Off Status:
Pressing the image of a hand with a pointed finger button changes the current mode of the timer. If **ON** is indicated on the display the boiler is currently running and if **OFF** is indicated the boiler is off/blowing down. Once one of the programs are started the indicator will automatically turn to the **ON** position and when one of the programs ends it will automatically be set to the **OFF** position.

Daylight Saving Time:
The timer does not automatically adjust for daylight saving time and the time will have to be adjusted manually.

Programmed Combinations:
Switch **OFF** commands have priority over switch **ON** commands.

NOTES:
1. The timer is set according to the boiler operation. When the timer is **ON** the boiler is **ON** and the blowdown is **OFF**.
2. During programming, if no button is pressed after 30 seconds, the timer will revert back to normal operating mode.
3. After programming, the override button may need to be pressed to change the ON/OFF status for the current day and time.

NOTICE Periodic blowdown is recommended.
30-MINUTE ROOM TIMER Interval Timer for CU Commercial Steambaths

Functionality of the Timeswitch
The countdown timer uses a relay to switch the steam solenoid on. During the preset running time, the relay energizes and activates the connected steam solenoid by closing a circuit. After the time has elapsed, the relay deenergizes and deactivates the connected steam solenoid by opening the circuit again. **THE TIMER MAY ONLY BE OPERATED AFTER INSTALLATION IN A PROTECTIVE HOUSING.**

BEFORE USE
Before installing and using this timer, it is absolutely necessary that you read this operating manual thoroughly.

SAFETY INSTRUCTIONS
This timer may only be installed by a qualified, licensed electrician and must be installed in accordance with National and local codes.

WARNINGS
1. **SHOCK HAZARD!** Install the timer per these instructions before connecting to the main supply. Never touch live contacts or components.
2. Protection from contact with the line voltage components must be achieved by proper installation in a 4 x 4 junction box. When installing the timer, ensure the fastening sliders prevent the timer from being removed.

STEAM VENT
IMPORTANT: A steam vent (PN 104072) must be installed in the steam line between the steam generator and the steam solenoid valve when using a 30 minute timer as shown. The steam vent will release hydrostatic pressure in the boiler while filling when the 30 minute timer has timed out.

1. The steam vent shall be plumbed into a Tee in the steam line between the boiler and the solenoid valve. Only one steam vent is required, even if the boiler services two rooms.
2. **IMPORTANT NOTE:** The steam vent should remain accessible for service.
3. The steam vent should be oriented vertically with the threads down, as shown in Figure 4.
4. The steam vent is provided with 3/4” NPT male and 1/2” NPT female thread for connecting to the steam line.

DIGITAL 30-MINUTE ROOM TIMER
(PN CU-99216DIG)

INSTALLING THE TIMER
DIP SWITCHES SETTING
Figure 1 shows the default setting for the timer. The timer is factory set to run for 30 minutes.

CONNECTING THE ROOM TIMER
- Remove one of the knockout holes on the left side of the boiler jacket.
- Remove the room timer jumper from the terminal block.
- Connect the timer terminals 1, 2, 3 and 5 to the terminal block as shown on the wiring diagram Figure 2.
- Mount the timer plate assembly on a 4 x 4 Electrical box (not supplied).

Figure 1: Default Settings

Digital Timer

Figure 2: Wiring Diagram
DIGITAL 30-MINUTE ROOM TIMER (cont.)

Maximum run time can be set at 15, 30 or 60 minutes. Use switches 3 and 4 to set run time.

<table>
<thead>
<tr>
<th>Run Time</th>
<th>Switch 3</th>
<th>Switch 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min.</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>30 min.</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>60 min.</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

SETTING A RUNNING TIME

Using the “-” and “+” buttons, you can set the desired running time during which the steam generator will operate. Press the “START/STOP” button. The displayed running time is counted down while the colon in the center of the time display flashes.

MECHANICAL 30-MINUTE ROOM TIMER (PN CU-99216B)

INSTALLING THE TIMER

Image to the right shows the default position of the normally open 30-minute timer switch. Signals a situation where minor injury or product damage may occur if you do not follow instructions. Maximum run time can be set up to 30 minutes.

IMPORTANT NOTE:

Only use the normally open (N.O.) terminal when wiring the mechanical timer.

CONNECTING THE ROOM TIMER

- Remove one of the knockout holes on the left side of the boiler jacket.
- Remove jumper shown in Figure 3. Wire the timer’s normally open terminal to the terminal block, as shown in Figure 3.
- Mount the timer plate assembly on a 2 x 4 Electrical box (not supplied).

SETTING A RUNNING TIME

To set the desired running time during which the steam generator will operate, turn timer knob clockwise. The steam solenoid connected to the timer is switched on. The displayed running time is counted down.

END OF RUNNING TIME

After the preset running time has elapsed, the timer switches the connected steam solenoid off.

DIGITAL 30-MINUTE ROOM TIMER (cont.)

Maximum run time can be set at 15, 30 or 60 minutes. Use switches 3 and 4 to set run time.

<table>
<thead>
<tr>
<th>Run Time</th>
<th>Switch 3</th>
<th>Switch 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min.</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>30 min.</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>60 min.</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

SETTING A RUNNING TIME

Using the “-” and “+” buttons, you can set the desired running time during which the steam generator will operate. Press the “START/STOP” button. The displayed running time is counted down while the colon in the center of the time display flashes.

MECHANICAL 30-MINUTE ROOM TIMER (PN CU-99216B)

INSTALLING THE TIMER

Image to the right shows the default position of the normally open 30-minute timer switch. Signals a situation where minor injury or product damage may occur if you do not follow instructions. Maximum run time can be set up to 30 minutes.

IMPORTANT NOTE:

Only use the normally open (N.O.) terminal when wiring the mechanical timer.

CONNECTING THE ROOM TIMER

- Remove one of the knockout holes on the left side of the boiler jacket.
- Remove jumper shown in Figure 3. Wire the timer’s normally open terminal to the terminal block, as shown in Figure 3.
- Mount the timer plate assembly on a 2 x 4 Electrical box (not supplied).

SETTING A RUNNING TIME

To set the desired running time during which the steam generator will operate, turn timer knob clockwise. The steam solenoid connected to the timer is switched on. The displayed running time is counted down.

END OF RUNNING TIME

After the preset running time has elapsed, the timer switches the connected steam solenoid off.
TROUBLE SHOOTING

To prevent risk of electric shock, trouble shooting should be done only by a qualified licensed electrician.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No water in generator</td>
<td>Water supply is "OFF"</td>
<td>Turn on water supply</td>
</tr>
<tr>
<td></td>
<td>Clogged strainer</td>
<td>Clean or replace strainer screen</td>
</tr>
<tr>
<td></td>
<td>Control voltage disconnected</td>
<td>Restore control voltage</td>
</tr>
<tr>
<td></td>
<td>Defective ON/OFF control switch</td>
<td>Check/replace control switch</td>
</tr>
<tr>
<td></td>
<td>Defective water solenoid valve</td>
<td>Check/replace water solenoid valve</td>
</tr>
<tr>
<td></td>
<td>Defective PC Board</td>
<td>Check/replace PC Board</td>
</tr>
<tr>
<td>Water feed probe not functioning</td>
<td>Check/replace water feed probe (Models 360-1400) and probe isolator and/or MM150 (Models CU2000 & higher)</td>
<td>Check/replace water solenoid valve</td>
</tr>
<tr>
<td></td>
<td>Clogged isolator tube</td>
<td>Check/replace isolator tube (models 360-1400)</td>
</tr>
<tr>
<td>Generator does not heat</td>
<td>Power supply disconnected</td>
<td>Restore power supply</td>
</tr>
<tr>
<td></td>
<td>No water in generator</td>
<td>See above</td>
</tr>
<tr>
<td></td>
<td>Hi-Limit pressure control tripped</td>
<td>Clean out syphon tube & reset pressure control</td>
</tr>
<tr>
<td></td>
<td>LWCO not functioning</td>
<td>Check/replace LWCO probe</td>
</tr>
<tr>
<td></td>
<td>Defective contactor</td>
<td>Check/replace contactor</td>
</tr>
<tr>
<td></td>
<td>Defective pressure control</td>
<td>Check/replace control switch</td>
</tr>
<tr>
<td></td>
<td>Defective PC Board</td>
<td>Check/replace PC Board</td>
</tr>
<tr>
<td></td>
<td>Defective heating element</td>
<td>Check/replace heating element</td>
</tr>
<tr>
<td>Contactor chatters</td>
<td>Defective PC board</td>
<td>Check/replace PC Board</td>
</tr>
<tr>
<td>Generator floods</td>
<td>Water feed solenoid installed backwards</td>
<td>Reverse solenoid connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CU360-1400 Port “1” towards generator; 2” towards water supply</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CU2000 and larger, “IN” port towards water supply</td>
</tr>
<tr>
<td></td>
<td>Defective water solenoid valve</td>
<td>Check/replace water solenoid valve</td>
</tr>
<tr>
<td></td>
<td>Defective PC Board</td>
<td>Check/replace board</td>
</tr>
<tr>
<td></td>
<td>Water feed probe (Models 360-1400) not functioning</td>
<td>Check/replace water feed probe and isolator</td>
</tr>
<tr>
<td></td>
<td>Clogged isolator tube</td>
<td>Check/replace isolator tube (models 360-1400)</td>
</tr>
<tr>
<td></td>
<td>MM 150 (Models CU2000 and higher) is clogged</td>
<td>Clean out pipes under MM 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equalizing piping and float chamber</td>
</tr>
<tr>
<td>CU81600 rotates twice</td>
<td>Jumper in (X) BRN & BLK terminals not removed</td>
<td>Check/remove jumper (page 16)</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING GUIDE

NOTICE Read all warnings and instructions before performing any installation, maintenance, or troubleshooting. These instructions are intended to aid service personnel in isolating the issue causing the CU Steambath generator to malfunction. Troubleshooting does NOT substitute authorized technical service or factory evaluation. For replacement parts and warranty information, please call MrSteam technical support at the number listed at the bottom of this document.

CAUTION Before beginning troubleshooting, with all power disconnected at main switch, insure all electrical and mechanical connections are tight before energizing unit to prevent electrical problems and mechanical leaks.

CAUTION Under any circumstances, only qualified service personnel should attempt the below procedures.

NOTICE Refer to wiring diagram for check points.

STEP 1: Test your main control voltage and verify you have 120V.

STEP 2: When you have your blowdown timer set properly and running you will have 120V at these two points. Make sure your blowdown timer is set for a run-time. Refer to page 29 for full instructions on operating the blowdown timer. You must have voltage coming out of the blowdown timer from the brown wire. Have it set to run. Below are the 3 way manual override switch positions. You can set it to permanent ON for all of the following tests.

WARNING Burn Hazard. Pressurized Steam and Hot Water is discharged during blowdown.

3-WAY MANUAL OVERRIDE SWITCH

- **I** = Boiler Permanent ON
- **ḍ** = Automatic
- **O** = Boiler Permanent OFF

STEP 3: Make sure the on/off switch is set to the on position. Testing here will determine if the on/off switch is functioning. If there is no voltage then your switch is faulty.

STEP 4: Check to see that you have 120V going to L1 & L2 of the upper PC board. If you do not have voltage this could mean that the room overtemp (125 degree) has tripped and cut the power to the rest of the system.

STEP 5: Verify that you have 120V on L1 & L2 of the lower pc board. If not you may have a problem with your upper pc board

TROUBLESHOOTING THE 104460 BOARD

Perform the steps below to verify proper function.

WARNING Substitution of components or modification of wiring systems voids warranty and can lead to dangerous operating conditions.

- Pulling off the purple wire from the board should cause the water solenoid to engage and fill the unit.
- If the sight glass is full and tripped on a high water, pulling the pink wire will release it from a high water condition and engage the contactors (if the rest of the circuit is functioning properly).

WARNING Safety glasses and gloves should be worn at all times when working with or examining water gauge glass and connections.

MAINTENANCE OF PROBE AND LWCO

- Inspect probe annually for scale build-up and clean if necessary. Make certain there is no scale or build-up on the probe or its white insulator. For cleaning instructions, refer to page 25.
- Replace probe every 10 years. More frequent replacement of the probe is required if it is used in locales where significant water treatment is required, where more frequent cleaning is necessary, or in applications with high make-up water requirements.
- Replace the low water cut-off every 15 years.

NOTICE For recommended feedwater quality, refer to page 10.
TROUBLESHOOTING GUIDE (cont.)

STEP 6 & 7: Check these terminal points against a ground or to the boiler jacket and verify that you have 120V. If you do not have voltage this means that the controller is tripped on pressure. The manual high limit can be reset by pushing down the metallic tab located on the top of the controller.

CAUTION Be sure to slowly release pressure to zero (0) psig before resuming operation of steam bath generator.

STEP 8: Check to see that you have 120V at the contactor. If you do not then one of your pressure controllers are tripped. If you have 120V and the contactor is not engaging then this may indicate a faulty contactor.
CHECK

PC Board - Models CU360-1400

CAUTION Prior to checking boiler disconnect boiler electric power supplies at main safety switch or fuse panel. Turn the boiler switch OFF.

1. Turn the control voltage ON and turn the boiler switch ON. Measure the voltage across "L1" and "L2" on the 104460 board. The voltage should be approximately 110 VAC.
2. On the 104460 board, disconnect the wire from the "LOW" terminal and check the voltage across "L2" and "PUMP". The voltage should be approximately 110 volts (same as "L1" and "L2"). Connect a jumper between the "LOW" and "GND" terminals. The voltage between "L2" and "PUMP" should be zero.
3. On the 104460 board, disconnect the wire from the "LOW" terminal. There should be no voltage between the "L2" and "CONT" terminals. Connect the jumper between the "LOW" and "GND" terminals. The voltage between "L2" and "CONT" should be 110V.

Low Water Cutout, Water Feed and High Water Cutout Probes

Models CU360 through CU1400 are equipped with two probes for low water cut-off (LWCO) and water feed control. Failure to clean the probes may result in generator not operating, overflow or element failure.

CAUTION Turn off all power supplies to steam bath generator and release pressure to zero (0 psig) before removing probes.

1. Probes are located in the top of the generator. Remove covers and disconnect wires from probes. Note wire connections.
2. Remove probes using a standard spark plug wrench. Care should be taken not to damage the insulation.
3. Check probes for deposits. Use emery cloth to clean probes.
4. Remove and flush probe isolator (thoroughly) with water. If clogged, use a long piece of wire to remove obstruction. Replace if necessary, center probe rod in isolator tube.
5. Use teflon tape on probe threads and reinstall.
6. After installation, make sure probe is not touching ground. With generator drained and probe wires disconnected, there should be no resistance (X) between probe and ground. Check for leaks.
7. To test AUX LWCO, press and hold the manual reset button on the side of the steam bath generator for 5 seconds.

Steam Solenoid Valve

1. Check voltage rating of solenoid valve (120 VAC for United States, Canada, Mexico; may be 220-240 VAC for other countries).
2. Check voltage across solenoid coil.
 a. If there is voltage across coil and valve does not allow passage of steam, check for clogged valve. Clean outline with bottle brush. If solenoid valve is still malfunctioning, the valve is defective and should be replaced.
 b. If there is no voltage across coil, check room temperature control.
 c. There will be a red dot under “OUT2” on the Digital 1 Control when there is a call for heat.
 d. Ensure, if equipped, the room Timer is On.

Digital 1® Control and Sensor: Consult Factory

Heating Element

NOTICE Turn off all power at circuit breaker. Consult factory for resistance values.

1. Check power voltage across heating element terminals. Refer to nameplate data for voltage rating. Voltage should be as marked on nameplate.
2. Using an ammeter, measure total current draw as per nameplate rating. (See also Amperage Chart, page 12. Each leg should register about the same reading.
3. If there is more than one heating element, check amperes of each element. Each leg of the same element should register about the same reading for that element. Reading may be different from other elements due to KW (Kilowatt) rating of individual heating element.
4. Check heating element for resistance values. Consult factory for the resistance values for the element specifications.

CAUTION Prior to checking boiler disconnect boiler from electric power supply at main safety switch or fuse panel. Turn boiler switch to OFF.
INSTRUCTIONS FOR ELEMENT REPLACEMENT

READ INSTRUCTIONS COMPLETELY BEFORE STARTING WORK

CAUTION Before Installing your new elements be sure
McDonnell Miller low water cut-off and aux. low water cutoff (if
supplied) is operating properly. The float chamber and lower
equalizer column of the MM control must be completely clear of
sludge or other foreign matter. Failure to do this may cause the
immediate burn-out of the new elements. If the unit is probe
equipped, check condition of the probes and isolator.

All elements are thoroughly checked before shipment. The manu-
facturer cannot be responsible for burn-outs caused by a faulty low
water cut-off.

The lower equalizer column can best be examined by breaking the
unions on either side and then visually and manually examining the piping
with your finger or probes to see if it is clear and clean.

NOTICE Models CU360 - CU1400 use probes for liquid level sensing
and control. Model CU2000 and higher use McDonnell-Miller MM 150.

1. Disconnect boiler from electric power supply at main safety switch or fuse panel.
 Then turn boiler switch to “OFF” position.
2. Close water supply valve on incoming water supply line.
 Drain boiler completely of water.
3. Open boiler door to access heating element.
4. Disconnect wire (electric) leads connecting element to main power
 system of boiler. Again, note wire connections to facilitate re-assembly.
 Proceed to remove and discard (6) bolts from flange.

NOTICE The wire connections to facilitate re-assembly (see wiring schematic).
 Remove and discard six (5/16”-18) bolts from flange. Do not reuse these bolts.
5. Thoroughly clean boiler flange of all foreign material. Be certain no part of old
gasket remains on flange.
6. Proceed to install element flange assembly with gasket between boiler flange
 and element flange. In doing this, be careful to align flange holes so element wire
 connection terminals on element assembly are in line with previously disconnected
 wire leads to facilitate easy connections.

NOTICE Observe markings on element flange. Install element marking
“TOP” on top.
7. Use only new element flange bolts. Tighten all (6) element flange bolts to a torque
 value of 22 lb-ft each (see illustration).
8. Connect all wires to the terminals. Tighten all element terminals to a torque value
 of 20 lb-in each (see illustration). Make sure all wires are clean and bright to
 assure good electrical contact.
9. Check that the wires are correctly connected to the contactor terminals and are
 tightened to a torque listed on the contactor (ensure each nut holding the bus
 bars in place are torqued to 20 lb-in). Make sure all wires are clean and bright
 to assure good electrical contact.
10. Open water valve to allow water supply to reach boiler feed mechanism.
11. As boiler automatically refills, observe the new flange assembly for possible
 leaks. If water is noticed, the bolts must be re-tightened. Before doing this, turn
 the boiler off at the main fuse safety switch.
12. When boiler reaches working pressure, check flange assembly again for leaks.

CAUTION Avoid use of chemical cleaning compounds.
Follow maintenance instructions provided with the boiler.
LABEL FUNCTION
CU360-1400 Typical Component Arrangement

A Steam Outlet
B Water Inlet
C Drain Outlet
D Optional Automatic Blowdown Valve
E High Limit Pressure Control
F Operating Pressure Control
G Pressure Gauge
H Gauge Glass Assembly
I Drain Valve
J Safety Valve
K On/Off Switch
L Mechanical low water cutoff and feeder (MM150)

CU2000-4500 with Digital 1, Clock and Blowdown

Auxiliary Manual Reset Low Water Cutoff

- Standard on all CU boilers
- For CU2000-3000 a block off plate is used where the junction box is shown
- For CU4500 there is a junction box as shown.
- For CU360-1400, the Aux Low Water Cutoff probe is located on top of the boiler (see wiring diagrams on page 14 & 15).
COMMERCIAL STEAMBATH REPLACEMENT PARTS

Models CU360 – CU4500

<table>
<thead>
<tr>
<th>PART #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOWDOWN</td>
<td></td>
</tr>
<tr>
<td>99353</td>
<td>Time Delay Relay Board</td>
</tr>
<tr>
<td>103661</td>
<td>Blowdown Valve</td>
</tr>
<tr>
<td>103805</td>
<td>Mechanical Blowdown Timer*</td>
</tr>
<tr>
<td>103662</td>
<td>Digital Blowdown Timer*</td>
</tr>
<tr>
<td>103662-1</td>
<td>Digital Blowdown Timer* with housing</td>
</tr>
<tr>
<td>CONTACTORS</td>
<td></td>
</tr>
<tr>
<td>99003</td>
<td>50A 3 Pole 120V 50/60</td>
</tr>
<tr>
<td>99006B</td>
<td>50A 4 Pole 120V 50/60</td>
</tr>
<tr>
<td>99075</td>
<td>60A 3 Pole 120V 50/60</td>
</tr>
<tr>
<td>102206-1</td>
<td>75A 3 Pole 120V 50/60</td>
</tr>
<tr>
<td>CONTROLS</td>
<td></td>
</tr>
<tr>
<td>104066</td>
<td>Digital 1 Board 120V</td>
</tr>
<tr>
<td>104066C</td>
<td>Digital 1 Board 240V</td>
</tr>
<tr>
<td>104067-1</td>
<td>Sensor Only for Digital 1 with Guard</td>
</tr>
<tr>
<td>CU-104066</td>
<td>Digital 1 Field Kit 120V (with Sensor + Board, Guard, Cable)</td>
</tr>
<tr>
<td>CU-104066C</td>
<td>Digital 1 Field Kit 1240V (with Sensor + Board, Guard, Cable)</td>
</tr>
<tr>
<td>CU-99216B</td>
<td>CU-30 Minute Mechanical Timer</td>
</tr>
<tr>
<td>CU-99216DIG</td>
<td>Digital Timer</td>
</tr>
<tr>
<td>ELECTRIC</td>
<td></td>
</tr>
<tr>
<td>90229</td>
<td>Probe Spark plug (1) for each Rod</td>
</tr>
<tr>
<td>92830</td>
<td>ON/OFF Switch</td>
</tr>
<tr>
<td>99207</td>
<td>Terminal Block 150 AMP 3 Pole</td>
</tr>
<tr>
<td>99524-6T</td>
<td>18” #6 Wire with Terminal - for Heating Element</td>
</tr>
<tr>
<td>99807B</td>
<td>¾” x 9” Probe Rod Stainless**</td>
</tr>
<tr>
<td></td>
<td>CU360-CU750-Low Water</td>
</tr>
<tr>
<td>104304</td>
<td>¾” x 6” Probe Rod Stainless**</td>
</tr>
<tr>
<td></td>
<td>CU360 - CU750-Hi Water</td>
</tr>
<tr>
<td>104460</td>
<td>Level Control PC Board CU360-CU1400 (Serial Number CXA1220813 and higher)</td>
</tr>
<tr>
<td>103538-240</td>
<td>240 Volt Level Control PC Board</td>
</tr>
<tr>
<td>100378</td>
<td>Probe Isolator</td>
</tr>
<tr>
<td>90229-1</td>
<td>AUX LWCO probe assembly</td>
</tr>
<tr>
<td>90241MRT</td>
<td>AUX LWCO Board</td>
</tr>
<tr>
<td>90241D</td>
<td>AUX HWCO Board</td>
</tr>
<tr>
<td>92829</td>
<td>Aux LWCO Pilot Light</td>
</tr>
<tr>
<td>99348</td>
<td>AUX LWCO RESET BUTTON</td>
</tr>
<tr>
<td>99315</td>
<td>Fuse Block 208/240V</td>
</tr>
<tr>
<td>99314</td>
<td>Power Fuses 208/240V 60A 250V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAUGE GLASS</td>
<td></td>
</tr>
<tr>
<td>99074-1</td>
<td>Gauge glass with 2 Gaskets (CU360 - 750)</td>
</tr>
<tr>
<td></td>
<td>Gauge glass with 2 Gaskets (CU1000 -1400) (SN beginning with A, CXA, CXM)</td>
</tr>
<tr>
<td>99080-1</td>
<td>Gauge glass with 2 Gaskets (CU1000 - CU1400) (SN beginning with A, CXA, CXM)</td>
</tr>
<tr>
<td></td>
<td>Gauge glass with 2 Gaskets (CU2000 - CU3000)</td>
</tr>
<tr>
<td>99081-1</td>
<td>Gauge glass with 2 Gaskets (CU4500)</td>
</tr>
<tr>
<td>99174CV</td>
<td>Gauge Glass 0-Ring Gasket-Viton Washer</td>
</tr>
<tr>
<td>99173C</td>
<td>Gauge Glass Valve Set less Tube & Rods</td>
</tr>
</tbody>
</table>

ELECTRIC	
99317	Fuse Block 480V
99316	Power Fuses 480V 60A 600V
CU99331B	Control Voltage transformer 208V to 120V
CU99331C	Control Voltage transformer 240V to 120V
CU99331F	Control Voltage transformer 480V to 120V
99580	Terminal Block 4 Pole
99593	Terminal Block

ELEMENTS	
39121B	12 KW 208V 1PH
39121C	12 KW 240V 1PH
39123B	12 KW 208V 3PH
39123C	12 KW 240V 3PH
39123F	12 KW 480V 3PH
39181B	18 KW 208V 1PH
39181C	18 KW 240V 1PH
39183B	18 KW 208V 3PH
39183C	18 KW 240V 3PH
39183F	18KW480V3PH
99088	Gasket Compound
99096	Gasket 4½” DIA.
103540	Gasket Kit (includes gasket, hardware & bolts)

MECHANICAL LEVEL CONTROL	
99114	Mechanical Low Water Cutoff & Feeder (mm 150)
99120	2 Wire Mercury Switch
99121	3 Wire Mercury Switch
103914	Micro Switch Assy
SA150-14	Head Gasket
SA150-106R	Bellows Assembly w/Gasket
SA150-11	Float Rod & Ball Assembly

*Both the Mechanical and Digital Blowdown Timers are available for surface mounting. Add suffix "K" to Part Number

Also CU1000 -1400 w/SN beginning with AX, CXA, CXM
COMMERCIAL STEAMBATH REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>PART #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER FEED & STEAM SOLENOIDS</td>
<td></td>
</tr>
<tr>
<td>99031</td>
<td>½” 120V Water Feed Solenoid</td>
</tr>
<tr>
<td></td>
<td>CU1000-CU1400 (SN beginning with N, CXA, CXM)</td>
</tr>
<tr>
<td></td>
<td>CU2000-CU4500 (all)</td>
</tr>
<tr>
<td>99032</td>
<td>½” 240V Water Feed Solenoid</td>
</tr>
<tr>
<td></td>
<td>CU1000-1400 (SN beginning with N, CXA, CXM)</td>
</tr>
<tr>
<td></td>
<td>CU2000-CU4500 (all)</td>
</tr>
<tr>
<td>99042</td>
<td>¼” 120V Water Feed Solenoid</td>
</tr>
<tr>
<td></td>
<td>CU360-CU1400 (SN beginning with AX, CXA, CXM)</td>
</tr>
<tr>
<td></td>
<td>CU360-CU750 (SN beginning with DP, CXA, CXM)</td>
</tr>
<tr>
<td>99042C</td>
<td>¼” 240V Water Feed Solenoid</td>
</tr>
<tr>
<td></td>
<td>CU360-CU1400 (SN beginning with AX, CXA, CXM)</td>
</tr>
<tr>
<td></td>
<td>CU360-CU750 (SN beginning with DP, CXA)</td>
</tr>
<tr>
<td>99284A</td>
<td>Low Pressure Steam 120V 1”</td>
</tr>
<tr>
<td>99285A</td>
<td>Low Pressure Steam 120V ½”</td>
</tr>
<tr>
<td>99284B</td>
<td>Low Pressure Steam 240V 1”</td>
</tr>
<tr>
<td>99285B</td>
<td>Low Pressure Steam 240V ½”</td>
</tr>
<tr>
<td>99286A</td>
<td>Low Pressure Steam 120V ¾”</td>
</tr>
<tr>
<td></td>
<td>CU360-1400 (SN beginning with AX 3197, CXA, CXM)</td>
</tr>
<tr>
<td></td>
<td>CU2000-4500 (SN beginning N4-18455, CXM)</td>
</tr>
<tr>
<td>PRESSURE CONTROL</td>
<td></td>
</tr>
<tr>
<td>99113R</td>
<td>Operating Pressure Control 0-15 PSIG</td>
</tr>
<tr>
<td>999290</td>
<td>Pressure Gauge 0-30 PS</td>
</tr>
<tr>
<td>99969R</td>
<td>HI-LIMIT Control w/Manual Reset 15PSIG</td>
</tr>
<tr>
<td>FB023</td>
<td>Pigtail ¾” NPT 180º</td>
</tr>
<tr>
<td>VALVES</td>
<td></td>
</tr>
<tr>
<td>99123</td>
<td>Strainer ½ inch</td>
</tr>
<tr>
<td>99162</td>
<td>Spring Check Valve ¾”</td>
</tr>
<tr>
<td></td>
<td>CU1000 - CU1400 (SN beginning with N, CXA, CXM)</td>
</tr>
<tr>
<td></td>
<td>CU2000 - CU4500 (all)</td>
</tr>
<tr>
<td>99167</td>
<td>Spring Check Valve ½”</td>
</tr>
<tr>
<td></td>
<td>CU360 - CU1400 (SN beginning with AX, CXA, CXM)</td>
</tr>
<tr>
<td></td>
<td>CU360 - CU750 (SN beginning with DP, CXA)</td>
</tr>
<tr>
<td>99178</td>
<td>Valve ½” Steam Ball</td>
</tr>
<tr>
<td>99182</td>
<td>Valve Gate Valve ¾” Steam</td>
</tr>
<tr>
<td>99184</td>
<td>Valve Gate Valve 1 Steam</td>
</tr>
<tr>
<td>99297</td>
<td>15 PSIG Safety Valve ¾”</td>
</tr>
<tr>
<td>MISC. PARTS</td>
<td></td>
</tr>
<tr>
<td>103984PC</td>
<td>Steam Head - ¾” Polished Chrome</td>
</tr>
<tr>
<td>103985</td>
<td>Acrylic Shield</td>
</tr>
<tr>
<td>CU-99216B</td>
<td>30 Minute Mechanical Timer</td>
</tr>
<tr>
<td>CU-99216DIG</td>
<td>30 Minute Digital Countdown Timer</td>
</tr>
</tbody>
</table>

WARRANTY

To view or download the MrSteam Residential Generator Warranty and register your Product go to: blog.mrsteam.com/wr